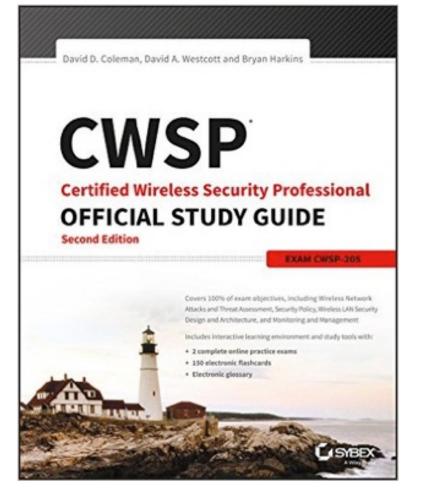
Evolution of WLAN Security

David Coleman

Director of Product Marketing Extreme Networks

Who is this guy?


Extreme Networks Director of Product Marketing

DAVID COLEMAN CWNE #4

Co-Author - Sybex CWSP Security Guide – 2nd edition

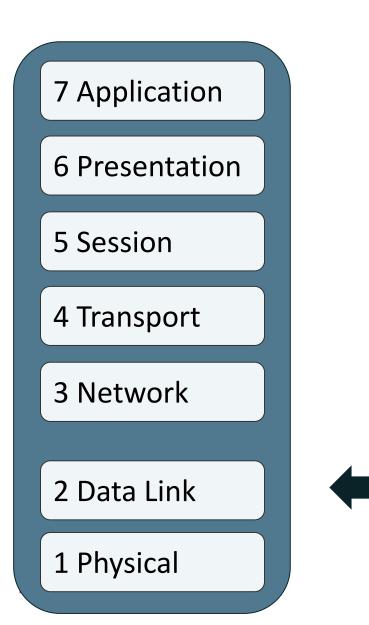
Amazon: <u>http://bit.ly/CWSPv2</u>

Topics

- History of Wi-Fi security
- Five Tenets of WLAN security
- Real-world caveats of Wi-Fi security
- WPA3
- Challenges and Future of WLAN security

802.11 security standards and certifications

IEEE	IEEE	Wi-Fi Alliance	Encryption Method	Cipher	Key Generation
Legacy		Open	WEP	ARC4	Static
Pre-802.11i	WPA- Personal	PSK	TKIP	ARC4	Dynamic
Post-802.11i	WPA- Enterprise	802.1X	TKIP	ARC4	Dynamic
Post-802.11i	WPA-2 Personal	PSK	CCMP	AES	Dynamic
Post-802.11i	WPA-2 Enterprise	802.1X	CCMP	AES	Dynamic


Five tenets of WLAN security

I. Authentication, Authorization and Accounting (AAA)

- **II.** Data Privacy and Integrity
- III. Segmentation (Access Control)
- IV. Monitoring
- V. Policy

Wi-Fi security and the OSI model

OSI Model

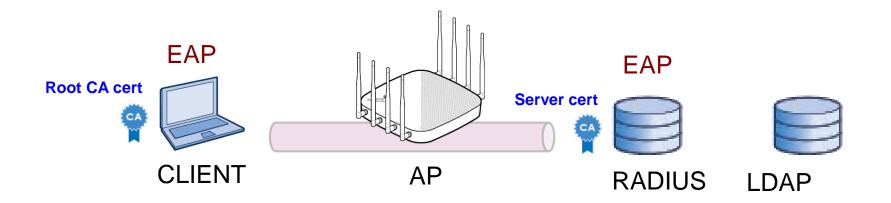
- Remember that Wi-Fi operates at Layer 1 and the MAC sublayer of Layer 2
- Robust Security Network (RSN) security mechanisms operate at the MAC sublayer

- Authentication: Validate user/device identity
- Authorization: Authorize user/device identity
- Accounting: Paper trail
- Wi-Fi is a wireless portal into corporate networks

Validating identity is important!

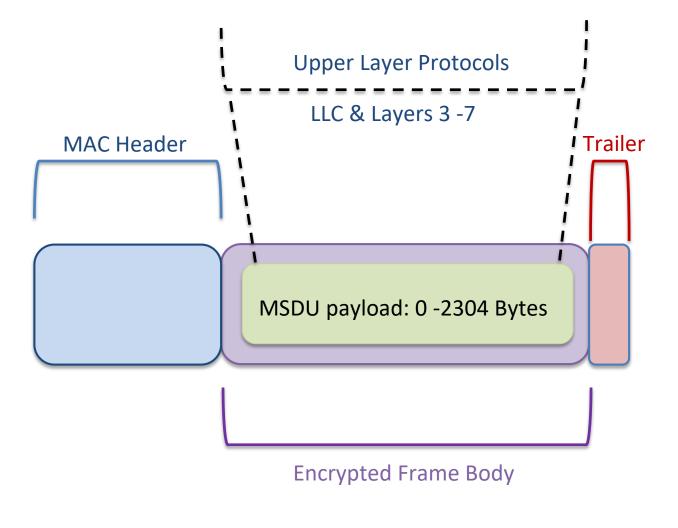
David Coleman

- Wi-Fi Geek
- Born February 1960



David Coleman Headley

- Convicted terrorist
- Born June 1960


Authentication – 802.1X/EAP

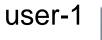
- 802.1X: Port based access control
- Authorization Framework
 - Supplicant
 - Authenticator
 - Authentication Server
- Integrates with LDAP

- Extensible Authentication Protocol (EAP)
- Server certificate and Root CA certificate
- Tunneled authentication using SSL/TLS

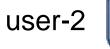
Encryption

- Encapsulated inside the frame body of an 802.11 data frame is an upper-layer payload called the MAC service data unit (MSDU).
- The MSDU contains data from the Logical Link Control (LLC) and layers 3–7.
- When encryption is enabled, the MSDU payload within an 802.11 data frame is encrypted.

Dynamic Key Encryption Generation


- There is a symbiotic relationship between PSK/802.1X authentication and the generation of dynamic encryption keys.
- An outstanding by-product of 802.1X/EAP can be the generation and distribution of dynamic encryption keys.
- Dynamic encryption keys can also be generated as a by-product of PSK authentication.
- Encryption and authentication are tied to each other in a Robust Secure Network Association (RSNA).

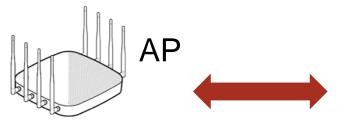
4-Way Handshake



- EAP protocols that utilize mutual authentication provide "seeding material" that can be used to generate encryption keys dynamically.
- To create the pairwise transient key (PTK), the 4-Way Handshake uses a pseudo-random function that combines the following:
 - Pairwise Master Key (PMK)
 - Numerical authenticator nonce
 - Numeral supplicant nonce
 - Authenticator's MAC address(AA)
 - Supplicant's MAC address (SPA)

Role -based access control (RBAC)

VLAN 10 firewall-policy-A bandwidth: unlimited



VLAN 20 firewall-policy-B bandwidth: 4 Mbps

VLAN 30 firewall-policy-C bandwidth: 2 Mbps

ISO ACADEMY

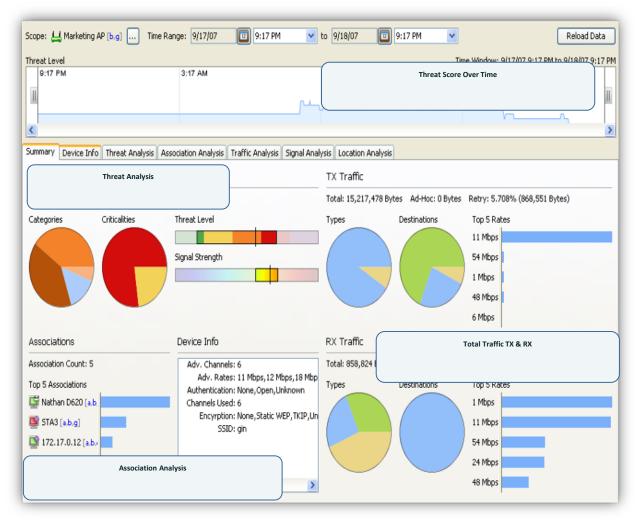
SSID: Corp-Wi-Fi Role-A: VLAN 10 firewall-policy-A bandwidth: unlimited

Role-B: VLAN 20 firewall-policy-B bandwidth: 4 Mbps

Role-C: VLAN 30 firewall-policy-C bandwidth: 2 Mbps

RADIUS

If AD group = sales, then send AVP = Role-A


If AD group = marketing, then send AVP = Role-B

If AD group = finance, then send AVP = Role-C

Active Directory groups: sales marketing finance

Monitoring - WIPS

- Very often, the WLAN vendors' WIPS solution was just enough to "checka-box" in a request-forproposal (RFP).
- Sadly, in many cases, WIPS security is now just an after-thought.

Extreme AirDefense: <u>https://www.extremenetworks.com/extreme-networks-blog/extreme-networks-</u> wireless-security-jewel-airdefense/

Policy

General policy

- Statement of Authority
- Audience
- Violation reporting procedures
- Risk assessment & threat analysis
- Security auditing
- Functional policy
 - Baseline practices
 - Monitoring and response

Human beings are always the weakest link

Policy – Penetration Testing

www.wifipineapple.com

- A popular WLAN auditing tool is Wi-Fi Pineapple from Hak5.
- Wi-Fi Pineapple consists of custom, purpose-built hardware and software, enabling its users to quickly and easily deploy advanced attacks using an intuitive web interface.

Real-World Caveats – 802.1X – Server certificate

Standard Time

	AAA Certificate Services
4-	Root certificate authority
	Expires: Sunday, December 31, 2028 at 3:59:59 PM Pacific 3
	O This certificate is valid

lame	Entrust Hoot Certification Authority - EC1	Kind certricate	Expires Dec 18, 2037, 7:55:35 AM	Keychain System Hoots
	Entrust Root Certification Authority - G2	certificate	Dec 7, 2030, 9:55:54 AM	System Roots
	Entrust.net Certification Authority (2048)	certificate	Dec 24, 2019, 10:20:51 AM	System Roots
	Entrust.net Certification Authority (2048)	certificate	Jul 24, 2029, 7:15:12 AM	System Roots
	ePKI Root Certification Authority	certificate	Dec 19, 2034, 6:31:27 PM	System Roots
	Federal Common Policy CA	certificate	Dec 1, 2030, 8:45:27 AM	System Roots
	GeoTrust Global CA	certificate	May 20, 2022, 9:00:00 PM	System Roots
	GeoTrust Primary Certification Authority	certificate	Jul 16, 2036, 4:59:59 PM	System Roots
	GeoTrust Primary Certification Authority - G2	certificate	Jan 18, 2038, 3:59:59 PM	System Roots
	GeoTrust Primary Certification Authority - G3	certificate	Dec 1, 2037, 3:59:59 PM	System Roots
	Global Chambersign Root	certificate	Sep 30, 2037, 9:14:18 AM	System Roots
	Global Chambersign Root - 2008	certificate	Jul 31, 2038, 5:31:40 AM	System Roots
	GlobalSign	certificate	Mar 18, 2029, 3:00:00 AM	System Roots
	GlobalSign	certificate	Jan 18, 2038, 7:14:07 PM	System Roots
	GlobalSign	certificate	Jan 18, 2038, 7:14:07 PM	System Roots
	GlobalSign	certificate	Dec 15, 2021, 12:00:00 AM	System Roots
G	GlobalSign Root CA	certificate	Jan 28, 2028, 4:00:00 AM	System Roots
1	Go Daddy Class 2 Certification Authority	certificate	Jun 29, 2034, 10:06:20 AM	System Roots
	Go Daddy Root Certificate Authority - G2	certificate	Dec 31, 2037, 3:59:59 PM	System Roots

802.1X requires a server cert signed by a CA

The simple method is to purchase a server certificate from a trusted root Certificate Authority (CA) such as GoDaddy (www.godaddy.com) or Verisign (www.verisign.com)

Complete AAA Certificate Services Root certificate authority Expires: Sunday, December 31, 2028 This certificate is valid	8 at 3:59:59 PM Pr	acific Standard Time	
lame	Kind	Expires Dec 18, 2037, 7:55:36 AM	Keychain System Hoots
Entrust Root Certification Authority - G2	certificate	Dec 7, 2030, 9:55:54 AM	System Roots
Entrust.net Certification Authority (2048)	certificate	Dec 24, 2019, 10:20:51 AM	An inclusion of a state of the second
Entrust.net Certification Authority (2048)	certificate	Jul 24, 2029, 7:15:12 AM	System Roots
ePKI Root Certification Authority	certificate	Dec 19, 2034, 6:31:27 PM	System Roots
Federal Common Policy CA	certificate	Dec 1, 2030, 8:45:27 AM	System Roots
GeoTrust Global CA	certificate	May 20, 2022, 9:00:00 PM	System Roots
GeoTrust Primary Certification Authority	certificate	Jul 16, 2036, 4:59:59 PM	System Roots
GeoTrust Primary Certification Authority - G2	certificate	Jan 18, 2038, 3:59:59 PM	System Roots
GeoTrust Primary Certification Authority - G3	certificate	Dec 1, 2037, 3:59:59 PM	System Roots
Global Chambersign Root	certificate	Sep 30, 2037, 9:14:18 AM	System Roots
Global Chambersign Root - 2008	certificate	Jul 31, 2038, 5:31:40 AM	System Roots
🛄 GlobalSign	certificate	Mar 18, 2029, 3:00:00 AM	System Roots
🛄 GlobalSign	certificate	Jan 18, 2038, 7:14:07 PM	System Roots
📴 GlobalSign	certificate	Jan 18, 2038, 7:14:07 PM	System Roots
📴 GiobalSign	certificate	Dec 15, 2021, 12:00:00 AM	System Roots
🗔 GlobalSign Root CA	certificate	Jan 28, 2028, 4:00:00 AM	System Roots
Go Daddy Class 2 Certification Authority	certificate	Jun 29, 2034, 10:06:20 AM	System Roots
Go Daddy Root Certificate Authority - G2	certificate	Dec 31, 2037, 3:59:59 PM	System Roots

The major trusted Certificate Authorities pay a lot of many to have their public root certificates accessible within the various operating systems.

The main advantage of purchasing a server certificate from a trusted CA is that there is no need to distribute and install root certificates on WLAN clients because they already are there.

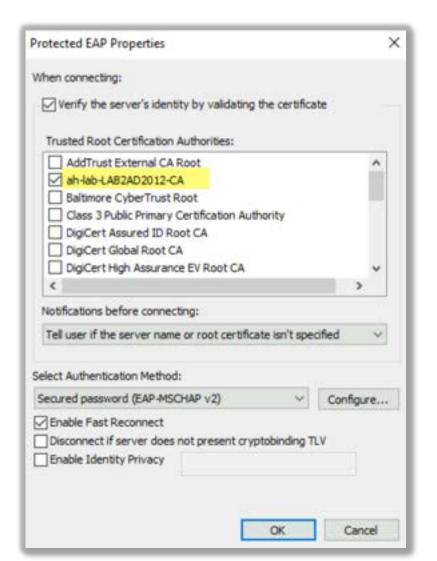
AAA Certificate Services Root certificate authority Expires: Sunday, December 31, 2028 at 3:59:59 PM Pacific Standard Time This certificate is valid					
Vame	Entrust Hoot Certification Authority - EC1	Kind certificate	Expires Dec 18, 2037, 7:55:35 AM	Keychain System Hoots	
	Entrust Root Certification Authority - G2	certificate	Dec 7, 2030, 9:55:54 AM	System Roots	
	Entrust.net Certification Authority (2048)	certificate	Dec 24, 2019, 10:20:51 AM	System Roots	
	Entrust.net Certification Authority (2048)	certificate	Jul 24, 2029, 7:15:12 AM	System Roots	
	ePKI Root Certification Authority	certificate	Dec 19, 2034, 6:31:27 PM	System Roots	
122	Federal Common Policy CA	certificate	Dec 1, 2030, 8:45:27 AM	System Roots	
	GeoTrust Global CA	certificate	May 20, 2022, 9:00:00 PM	System Roots	
	GeoTrust Primary Certification Authority	certificate	Jul 16, 2036, 4:59:59 PM	System Roots	
	GeoTrust Primary Certification Authority - G2	certificate	Jan 18, 2038, 3:59:59 PM	System Roots	
122	GeoTrust Primary Certification Authority - G3	certificate	Dec 1, 2037, 3:59:59 PM	System Roots	
	Global Chambersign Root	certificate	Sep 30, 2037, 9:14:18 AM	System Roots	
	Global Chambersign Root - 2008	certificate	Jul 31, 2038, 5:31:40 AM	System Roots	
	GlobalSign	certificate	Mar 18, 2029, 3:00:00 AM	System Roots	
	GlobalSign	certificate	Jan 18, 2038, 7:14:07 PM	System Roots	
	GlobalSign	certificate	Jan 18, 2038, 7:14:07 PM	System Roots	
	GiobalSign	certificate	Dec 15, 2021, 12:00:00 AM	System Roots	
6	GlobalSign Root CA	certificate	Jan 28, 2028, 4:00:00 AM	System Roots	
12	Go Daddy Class 2 Certification Authority	certificate	Jun 29, 2034, 10:06:20 AM	System Roots	
	Go Daddy Root Certificate Authority - G2	certificate	Dec 31, 2037, 3:59:59 PM	System Roots	

- The downside of using a public CA with 802.1X/EAP is that an attacker can possibly perform a man-in-the middle attack.
- An attacker can use a rogue AP along with rogue RADUS server and a server certificate that was also created from the same public CA.

18 C	AAA Certificate Services Root certificate authority Expires: Sunday, December 31, 2028 This certificate is valid	at 3:59:59 PM P	acific Standard Time	
Name	Entrust Hoot Certification Authority - EC1	Kind	Expires Dec 18, 2037, 7:55:35 AM	Keychain System Hoots
	Entrust Root Certification Authority - G2	certificate	Dec 7, 2030, 9:55:54 AM	System Roots
	Entrust.net Certification Authority (2048)	certificate	Dec 24, 2019, 10:20:51 AM	System Roots
	Entrust.net Certification Authority (2046)	certificate	Jul 24, 2029, 7:15:12 AM	System Roots
	ePKI Root Certification Authority	certificate	Dec 19, 2034, 6:31:27 PM	System Roots
600	Federal Common Policy CA	certificate	Dec 1, 2030, 8:45:27 AM	System Roots
-	GeoTrust Global CA	certificate	May 20, 2022, 9:00:00 PM	System Roots
	GeoTrust Primary Certification Authority	certificate	Jul 16, 2036, 4:59:59 PM	System Roots
-	and the second	certificate	Jan 18, 2038, 3:59:59 PM	System Roots
	GeoTrust Primary Certification Authority - G2	2 - C - C - C - C - C - C - C - C - C -		
1	GeoTrust Primary Certification Authority - G3	certificate	Dec 1, 2037, 3:59:59 PM	System Roots
	Global Chambersign Root	certificate	Sep 30, 2037, 9:14:18 AM	System Roots
	Global Chambersign Root - 2008	certificate	Jul 31, 2038, 5:31:40 AM	System Roots
	GlobalSign	certificate	Mar 18, 2029, 3:00:00 AM	System Roots
	GlobalSign	certificate	Jan 18, 2038, 7:14:07 PM	System Roots
	GlobalSign	certificate	Jan 18, 2038, 7:14:07 PM	System Roots
	GiobalSign	certificate	Dec 15, 2021, 12:00:00 AM	System Roots
	GlobalSign Root CA	certificate	Jan 28, 2028, 4:00:00 AM	System Roots
153	Go Daddy Class 2 Certification Authority	certificate	Jun 29, 2034, 10:06:20 AM	System Roots
12	Go Daddy Root Certificate Authority - G2	certificate	Dec 31, 2037, 3:59:59 PM	System Roots

This attack is complex and has many moving parts.

But because the chain of trust might be compromised, most organizations instead choose to install a server certificate signed by an internal CA on the RADIUS server.

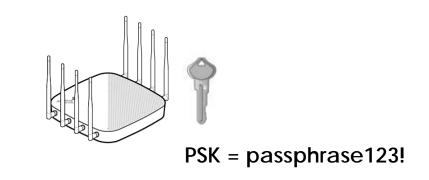


- The other option is to create a server certificate signed by an internal private CA such as Microsoft Certificate Services.
- Much like a public CA, a private CA establishes an internal company trust chain using separate certificates for the root and the servers.
- Many companies choose this method because they prefer to keep all the security in-house.

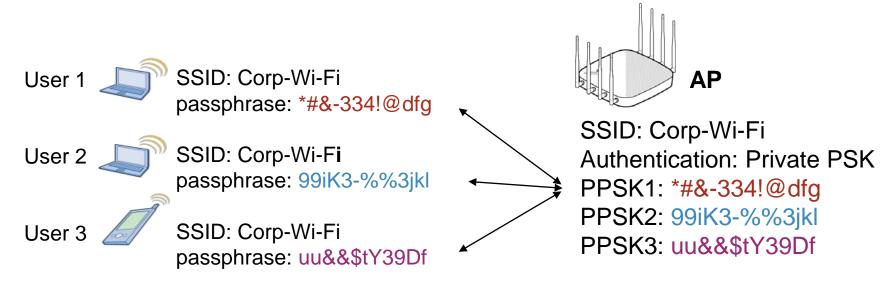
- There must be a means in which to distribute and install the root certificate to all of the WLAN supplicants.
- For example, the root certificate must be installed in the Trusted Root Certification Authorities Store of a Windows machine.
- Installing the root certificate onto Windows laptops can be easily automated using a group policy object (GPO).

However, a GPO cannot be used for MacOS, iOS, or Android mobile devices, or for personal Windows BYOD device that are not joined to the AD domain.

- Manually installing certificates on mobile devices and employee-owned devices is an administrative nightmare.
- For this reason, mobile device management (MDM) solutions are often deployed.


- Instead of a full-blown MDM solution, another option is a self-service device onboarding solution.
- Several WLAN vendors offer self-service solutions so employees can easily self-install security credentials such as an 802.1X /EAP root CA certificate.
- Third-party self-service onboarding solutions such as SecureW2 (<u>www.securew2.com</u>) are also available.

- Most secure 802.1X protocol is EAP-TLS which make use of client-side certificates.
- A client certificate is an entirely different animal within a PKI infrastructure.
- Distribution of client certificates adds a whole new layer of complexity


Real World Caveats – static PSK

- 8-63 character shared passphrase
- Never intended for use in the enterprise
- Often used for BYOD, Guest Access and IoT devices in the enterprise
- Susceptible to offline dictionary attacks
- Wi-Fi Alliance recommends 20 strong characters or more
- Biggest weakness is that the PSK credential is "static"

Private PreShared Key (PPSK)

- All users and devices have unique credentials
- If a user leaves or device is lost, the PPSK credential is simply changed for that one user or device

Private PreShared Key (PPSK)

- Multiple per-user and per-device PSKs assigned to a single SSID
- Easy to deploy
- No need for PKI, certificates or RADIUS servers
- Can be time-based credentials
- Solves the "static" PSK problem

<u>Coleman-</u> iMac	Private PSK- Manual	ZTe079<'&gHo669)?%OI
<u>Coleman -</u> <u>MacBook</u>	Private PSK- Manual	QLS655:>-IQC929#_[PK
<u>Donnie -</u> iPhone	Private PSK- Manual	wPf004[\^TJe188`%)BE
<u>Coleman -</u> iPhone	Private PSK- Manual	Vns938#}?eiB396:_&Jh
<u>Coleman-</u> <u>Kindle</u>	Private PSK- Manual	bDx635?;;Pus901_\;kD
<u>Coleman-</u> Surface-Pro3	Private PSK- Manual	fUx564.>}QhJ650I"_an

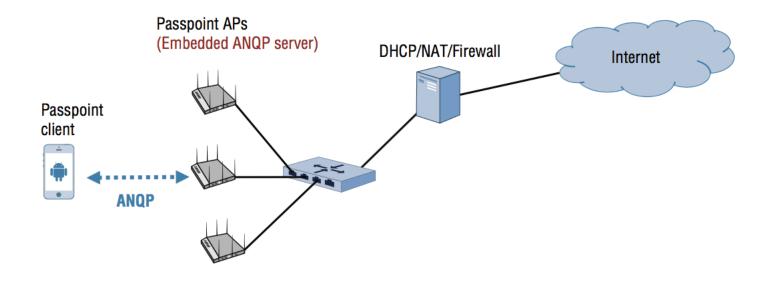
Private PreShared Key (PPSK) – Use Cases

IoT Devices: Provide unique and secure credentials for IoT devices. Many IoT devices and/or devices only support WPA2 Personal (PSK)

BYOD: Onboarding personal and/or company issued mobile devices with unique and secure credentials

Guest Access: Provide guest users with unique and secure credentials

Real-World Caveats – Hotspot Wi-Fi Access



 The bad guys are lurking at public access Wi-Fi hotspots

 Corporate Guest SSID are using open and unsecure

 Growing trend to provide encrypted guest access

Encrypted Hotspot Security– Passpoint devices

- Another growing trend with public access networks is the use of 802.1X/EAP with Hotspot 2.0.
- Hotspot 2.0 is a Wi-Fi Alliance technical specification that is supported by the Passpoint certification program.

Implementation is USA hotspots is sporadic and requires client-side support

Encrypted Guest access – Enterprise

- PPSK credentials have gained popularity for private company guest access
- Provides unique security credentials and encrypted guest access
- Value-added security for guest Wi-Fi users

Another option is OWE

Real-World Caveats: Corporate Guest Access

Guest user traffic should always be segmented from employee user traffic.

Source IP	Destination IP	Service	Action
Any	Any	DHCP-Server	PERMIT
Any	Any	DNS	PERMIT
Any	10.0.0.0/255.0.0.0	Any	DENY
Any	172.16.0.0/255.240.0.0	Any	DENY
Any	192.168.0.0/255.255.0.0	Any	DENY
Any	Any	Any	PERMIT

- Guest SSID: Wireless guest users should always connect to a separate guest SSID because it will have different security policies than a corporate or employee SSID.
- Guest VLAN: Guest user traffic should be segmented into a unique VLAN tied to an IP subnet that does not mix with the employee user VLANs.
- Captive Web Portal: A captive web portal can be used to accept guest login credentials. More importantly, the captive web portal should have a legal disclaimer.
- Guest Firewall Policy: An ingress guest firewall policy is the most important component of WLAN guest management.

WPA History

Security Enhancements have typically taken a reactive approach:

WEP – first exploits 2001

WPA (2003)

attempted to bridge security gap from WEP to 802.11i

2008 – Beck-Tews attacks shows vulnerabilities in TKIP (compromises confidentiality)

WPA-PSK brute force attacks (compromises network access and confidentiality)

WPA2 (2004) - IS NOT BROKE

Integrated security enhancements from 802.11i (added AES)

WPA2-PSK: brute force attacks still exist

Still maintains a TKIP only mode of operation

Inconsistent cryptography strength (SHA-1 <80 bits of security)

WPA3 (2018)

Disallows WEP & TKIP protocols

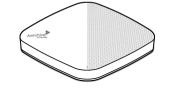
Requires the use of Protected Management Frames

Replaces PSK with SAE (Simultaneous Authentication of Equals)

WPA3 Enterprise

- 802.1X security has not changed
- Disallows WEP & TKIP protocols

- Requires the use of Protected Management Frames
- Optional Suite B Security certification, provides greater security
 - Based on U.S. Government cryptographic tools for sensitive networks
 - 192-bit Security suite of protocols includes:
 - AES-GCM-256 for authenticated encryption
 - HMAC-SHA384 for key derivation and key confirmation
 - ECDHE and ECDSA using a 384-bit elliptic curve
 - RSA key lengths of 3k-bits or greater
 - BIP-GMAC-256 for robust management frame protection



- Disallows WEP & TKIP protocols
- Requires the use of Protected Management Frames
- Replaces PSK with Simultaneous Authentication of Equals (SAE)
 - Password is never shared during the key exchange protocol
 - Uses 'Zero knowledge proof'
 - Resistant to dictionary attacks, you only get to guess the password once

SAE

Select passphrase

 WPA3 Personal replacement for PSK authentication

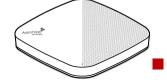
 Secure Authentication of Equals (SAE)

 SAE is a variant of Dragonfly, a password authentication key exchange based on a zeroknowledge proof 38

SAE confirm

SAE commit

SAE commit


SAE confirm

SAE

Select passphrase

Select passphrase

Prove you know the credentials without compromising the credentials

 No forging, modification or replay attacks

No offline dictionary attacks

Real-World Caveats – WPA3

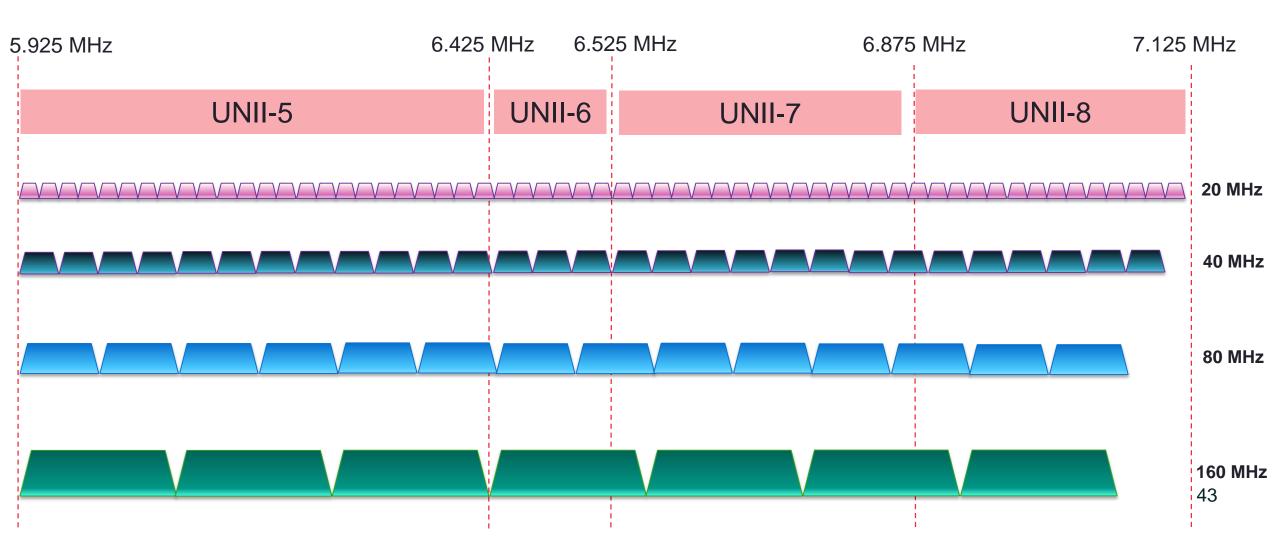
- Although WPA3 security has been around since 2018, mandatory support just became a requirement this year
 - 95% of current client population does not support
- Tactical deployments of WPA3 are rare but growing

Enhanced Open

- Optional certification for Wi-Fi CERTIFIED devices
 - Separate certification for open networks, not a component of WPA3
 - Does not require WPA2 or WPA3 certification
- Enhanced Open = Opportunistic Wireless Encryption (OWE) protocol
 - No user intervention required & no passwords to enter
 - Encryption without authentication
 - No authentication means no unique identity
- Enhanced Open mode provides basic protection against snooping, or eavesdropping over open networks
- Requires use of Protected Management Frames (PMF)

Real-World Caveats – OWE (Enhanced Open)

- Will not work with legacy clients
- OWE support on new clients is also rare because it is optional



- Encryption *without* authentication
- However support will most likely be mandated for the upcoming 6 GHz frequency band

(59) 20 MHz channels
(29) 40 MHz channels
(14) 80 MHz channels
(7) 160 MHz channels

1200 MHz of new frequency spectrum

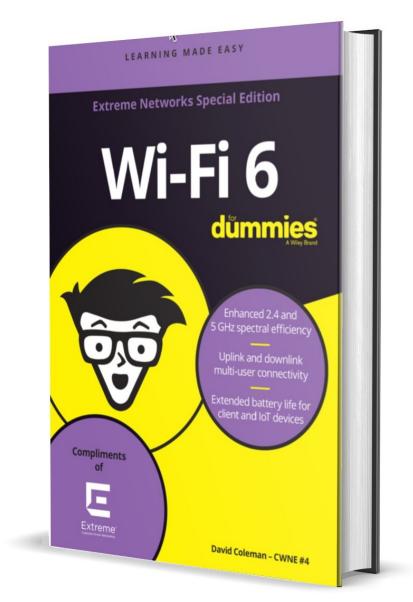
Concerns and Future of Wi-Fi Security

Lack of proper implementation

IoT Devices - low-hanging fruit

BLE attacks and hacks

Bluetooth Proliferation



Source: ABI Research

Wi-Fi 6 for Dummies

Download your free copy today!

http://bit.ly/WiFi6forDummies

